Central corrections on dimorphic groups

Hanamichi Kawamura

Tokyo University of Science

8th November 2024

2nd Kindai Workshop "Multiple zeta values and modular forms" Nov. 8, 2024 The formal multiple zeta values (via Racinet, Bachmann-van-Ittersum-Matthes, etc.):

 $\mathcal{Z}^{\mathfrak{f}}\coloneqq (\mathfrak{H}^1,*)/(\mathsf{regularized \ double \ shuffle}),$

with $(\mathfrak{H}^1, *)$: harmonic algebra (Hoffman).

Main Conjecture

$$\mathsf{span}_{\mathbb{Q}}\{\mathsf{multiple zeta values}\} \stackrel{?}{\simeq} \mathcal{Z}^{\mathfrak{f}}$$
 (as \mathbb{Q} -algebras)

Ecalle's terminology – symmetries on moulds

<u>Mould</u>: "function of a variable number of variables". The space of all moulds admit an addition + and multiplication \times .

Example (Generating functions of MZVs)

$$\mathsf{Zag}(u_1,\ldots,u_r) \stackrel{\mathsf{reg.}}{\coloneqq} \int_{0 < t_1 < \cdots < t_r < 1} \frac{t_1^{-u_1}}{1-t_1} dt_1 \cdots \frac{t_r^{-u_r}}{1-t_r} dt_r$$
$$\mathsf{Zig}(v_1,\ldots,v_r) \stackrel{\mathsf{reg.}}{\coloneqq} \sum_{0 < n_1 < \cdots < n_r} \frac{1}{(n_1-v_r)\cdots(n_r-v_1)}$$

Famous algebraic relations among MZVs of type " $\zeta(\mathbf{k})\zeta(\mathbf{l}) = \sum_{\mathbf{h}} \zeta(\mathbf{h})$ " are translated in mould theory, as mould symmetries.

Usual words	in Ecalle's theory
Shuffle relation (for itr. int.)	symmetr <u>a</u> l
Harmonic (or stuffle) relation (for nested sum)	symmetr <u>i</u> l

Dimorphic group

Generating functions Zag (of \int -type) and Zig (of \sum -type) are related by swap:

 $\mathsf{Zig} = \mathsf{Mini} \times \mathsf{swap}(\mathsf{Zag}),$

where Mini is a constant mould (i.e., independent of all variables). Such an operation (like multiplying Mini) is called a central correction.

Definition (Dimorphic group of as * is type)

We define *monomorphic* (= having a simple mould symmetry) groups as

 $GARI_{as} := \{M \mid symmetral\}, GARI_{is} := \{M \mid symmetril\}$

and, "dimorphic" (= having symmetries with/without swapping) group admitting central correction as

 $\mathsf{GARI}_{\mathsf{as}*\mathsf{is}} \coloneqq \{ M \in \mathsf{GARI}_{\mathsf{as}} \mid C \times \mathsf{swap}(M) \in \mathsf{GARI}_{\mathsf{is}} \; (\exists C: \mathsf{const.} \; \mathsf{mould}) \}.$

Theorem

A central correction in GARI_{as*is} is unique.

Namely, for any symmetral M, a constant mould C which makes $C \times swap(M)$ symmetril is unique (if it exists).

This theorem shows that, $\mathsf{GARI}_{\mathsf{as}*\mathsf{is}}$ and $\mathcal{Z}^{\mathfrak{f}}$ are essentially equivalent notions.

- **1** Does a similar fact exist in the Lie algebra ARI_{al*il} of GARI_{as*is}?
- Ecalle showed that, using the so-called flexion unit E, we can construct a new mould esse, and there exist an isomorphism

 $\mathsf{GARI}_{\mathsf{as*as}} \overset{\mathsf{adgari}(\mathfrak{ess})}{\longrightarrow} \mathsf{GARI}_{\mathsf{as*os}}.$

(Today's case: "polar specialization" $\mathfrak{E} = \mathsf{Pi} = \mathsf{swap}(\mathsf{Pa})$) Then, how does our result become in the space $\mathsf{GARI}_{\mathsf{as}*\mathsf{as}}$ of "bisymmetral" mould?

On we construct "mould theoretical definition" of q-harmonic/shuffle relations of q-MZVs? (Ecalle's *twisted symmetries* by flexion units may work?)