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Formal MZVs

The formal multiple zeta values (via Racinet, Bachmann–van-Ittersum–Matthes, etc. ):

Z f := (H1, ∗)/(regularized double shuffle),

with (H1, ∗): harmonic algebra (Hoffman).

Main Conjecture

spanQ{multiple zeta values} ?≃ Z f (as Q-algebras)
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Ecalle’s terminology – symmetries on moulds
Mould: “function of a variable number of variables”. The space of all moulds admit an
addition + and multiplication ×.

Example (Generating functions of MZVs)

Zag(u1, . . . , ur )
reg.:=

∫
0<t1<···<tr <1

t−u1
1

1 − t1
dt1 · · · t−ur

r
1 − tr

dtr ,

Zig(v1, . . . , vr )
reg.:=

∑
0<n1<···<nr

1
(n1 − vr ) · · · (nr − v1)

Famous algebraic relations among MZVs of type “ζ(k)ζ(l) =
∑

h ζ(h)” are translated in
mould theory, as mould symmetries.

Usual words in Ecalle’s theory
Shuffle relation (for itr. int. ) symmetral

Harmonic (or stuffle) relation (for nested sum) symmetril
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Dimorphic group
Generating functions Zag (of

∫
-type) and Zig (of

∑
-type) are related by swap:

Zig = Mini × swap(Zag),

where Mini is a constant mould (i.e., independent of all variables).
Such an operation (like multiplying Mini) is called a central correction.

Definition (Dimorphic group of as ∗ is type)
We define monomorphic (= having a simple mould symmetry) groups as

GARIas := {M | symmetral}, GARIis := {M | symmetril}

and, “dimorphic” (= having symmetries with/without swapping) group
admitting central correction as

GARIas∗is := {M ∈ GARIas | C × swap(M) ∈ GARIis (∃C :const. mould)}.
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Main result

Theorem
A central correction in GARIas∗is is unique.
Namely, for any symmetral M, a constant mould C which makes C × swap(M) symmetril is
unique (if it exists).

This theorem shows that, GARIas∗is and Z f are essentially equivalent notions.
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Bonus: Expected future works

1 Does a similar fact exist in the Lie algebra ARIal∗il of GARIas∗is?
2 Ecalle showed that, using the so-called flexion unit E, we can construct a new mould

essE, and there exist an isomorphism

GARIas∗as
adgari(ess)−→ GARIas∗os.

(Today’s case: “polar specialization” E = Pi = swap(Pa))
Then, how does our result become in the space GARIas∗as of “bisymmetral” mould?

3 Can we construct “mould theoretical definition” of q-harmonic/shuffle relations of
q-MZVs? (Ecalle’s twisted symmetries by flexion units may work?)
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