lterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	00000	000

Coaction Formula for the motivic version of Yamamoto's integral

Ku-Yu Fan

2024/11/9

- そ 浸 →

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	00000	000

1 Iterated integral

- 2 Yamamoto's integral
- 3 The motivic version
- 4 Coaction fomula

- ◆ 注 →

lterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
●୦୦	000	000	0000	00000	000

Iterated integral

590

2

∢ 浸⇒

æ

The motivic version

Coaction fomula

Examples 00000

イロト イポト イヨト イラト

3

References

Multiple zeta values(MZVs)

Definition

Multiple zeta values is a real number defined by

$$\zeta(k_1,\ldots,k_d) = \sum_{0 < n_1 < \cdots < n_d} \frac{1}{n_1^{k_1} \cdots n_d^{k_d}}$$

where $k_1, \ldots, k_{d-1} \in \mathbb{Z}_{>0}, k_d \in \mathbb{Z}_{>1}$.

lterated integral ○○●	Yamamoto's integral 000	The motivic version 000	Coaction fomula 0000	Examples 00000	References 000

Iterated integral

Definition

For $a_0, \ldots, a_{k+1} \in \mathbb{C}$ with $a_0 \neq a_1, a_k \neq a_{k+1}$, and a piecewisely smooth path $\gamma : [0,1] \to \mathbb{C}$ from a_0 to a_{k+1} such that $\gamma((0,1)) \subset \mathbb{C} \setminus \{a_1, \ldots, a_k\}$, we define

$$I_\gamma(a_0;a_1,\ldots,a_k;a_{k+1})$$

by the **iterated integral**

$$\int_{0 < t_1 < \cdots < t_k < 1} \prod_{j=1}^k \frac{d\gamma(t_j)}{\gamma(t_j) - a_j} \in \mathbb{C}.$$

Remark (Iterated integral expression)

$$\zeta(k_1,\ldots,k_d) = (-1)^d I(0;1,\{0\}^{k_1-1},\ldots,1,\{0\}^{k_d-1};1).$$

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	●00	000	0000	00000	000

Yamamoto's integral

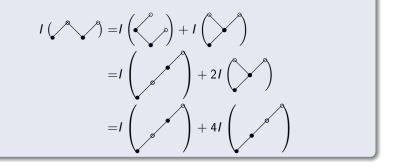
∢ 浸⇒

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
	O●O	000	0000	00000	000
Yamamo	oto's integral				

Example

$$I(\checkmark) = (-1)I(0; 1, 0; 1) = \zeta(2)$$

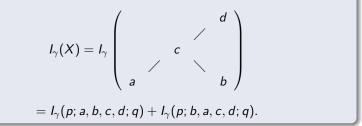
Example



Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	00●		0000	00000	000
Yamamo	to's integral				

Example

For $p, q, a, b, c, d \in \mathbb{C}$



5990

3

< 注入 < 注入 -

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	●00	0000	00000	000

The motivic version

・ロン ・回 と ・ ヨン ・ ヨン・

Let ${\cal P}$ be the Q-algebra of the ring of periods of mixed Tate motives over Q. Brown defined the motivic iterated integrals

$$I^{\mathfrak{m}}_{\gamma}(\mathsf{a}_{0};\mathsf{a}_{1},\ldots,\mathsf{a}_{k};\mathsf{a}_{k+1})\in\mathcal{P}.$$

It is known that there is a ring homomorphism called period map, which is onto and speculated to be injective.

$$\begin{array}{rccc} \mathsf{per}: & \mathcal{P} & \to & \mathbb{C} \\ & & I^\mathfrak{m}_\gamma(\mathsf{a}_0;\ldots;\mathsf{a}_{k+1}) & \mapsto & I_\gamma(\mathsf{a}_0;\ldots;\mathsf{a}_{k+1}) \end{array}$$

ヨト くほう

э

3

< 17 >

Motivic version of Yamamoto's integral

Definition

Motivic version of Yamamoto's integral $I^{\mathfrak{m}}_{\gamma}(X)$ is defined by

$$\begin{array}{rcl} I^{\mathfrak{m}}_{\gamma}(X) &\coloneqq& \sum_{Y \in \mathsf{Tot}(X)} I^{\mathfrak{m}}_{\gamma}(Y) \\ \downarrow & & \downarrow \\ I_{\gamma}(X) &=& \sum_{Y \in \mathsf{Tot}(X)} I_{\gamma}(Y) \end{array}$$

where Tot(X) is the set of all totally order which we need to consider.

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	●000	00000	000

Coaction fomula

< ≣⇒

< D > < A >

■ わへで

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	O●OO	00000	000
Coaction	on ${\cal P}$				

Let $\pi: \mathcal{P} \to \mathcal{A} := \mathcal{P}/(2\pi i)\mathcal{P}$ be the natural projection to its quotient. By the theory of mixed Tate motives, there is a natural motivic coaction $\Delta: \mathcal{P} \to \mathcal{A} \otimes \mathcal{P}$. Goncharov proved the coproduct formula of motivic iterated integrals, and Brown proved its coaction version.

Theorem (Goncharov)

$$\Delta(I_{\gamma}^{\mathfrak{m}}(a_{0}; a_{1}, \ldots, a_{k}; a_{k+1})) = \sum_{\substack{s=0 \ i_{0}<\cdots < i_{s+1} \ i_{0}=0 \ i_{s+1}=k+1}}^{k} \sum_{p=0}^{s} I^{\mathfrak{a}}(a_{i_{p}}; a_{i_{p}+1}, \ldots, a_{i_{p+1}-1}; a_{i_{p+1}}) \otimes I_{\gamma}^{\mathfrak{m}}(a_{i_{0}}; a_{i_{1}}, \ldots, a_{i_{s}}; a_{i_{s+1}}).$$

< D > < A >

Iterated integral	Yamamoto's integral 000	The motivic version 000	Coaction fomula ○○●○	Examples 00000	References 000
Infinitesi	mal coaction				

It is known that $\mathcal{A} = \bigoplus_{k \ge 0} \mathcal{A}_k$ has a structure of graded algebra. Let $\pi' : \mathcal{A} \to \mathfrak{L} := \mathcal{A}/\mathcal{A}_{>0}^2$. be the natural projection to its quotient, where $\mathcal{A}_{>0}$ is $\bigoplus_{k>0} \mathcal{A}_k$. Brown also proved the infinitesimal coaction D_r which is given by the following formula.

Definition

For $r \in \mathbb{N}$, the infinitesimal coaction $D_r : \mathcal{P} \to \mathfrak{L} \otimes \mathcal{P}$ is defined by

$$D_{r}(I_{\gamma}^{\mathfrak{m}}(a_{0}; a_{1}, \dots, a_{k}; a_{k+1}))$$

$$= \sum_{s=0}^{k-r} I^{\mathfrak{l}}(a_{s}; a_{s+1}, \dots, a_{s+r}; a_{s+r+1})$$

$$\otimes I_{\gamma}^{\mathfrak{m}}(a_{0}; a_{1}, \dots, a_{s}, a_{s+r+1}, \dots, a_{k}; a_{k+1})$$

- 4 国家 - 4 国家 -

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	○○○●	00000	000

Main theorem

Main Theorem 1 (F.)

$$D_r(I^{\mathfrak{m}}_{\gamma}(X)) = \sum_{\substack{Y \in X_r \\ Y \text{ is irr. } q \leftarrow_{\widetilde{X}} Y}} \sum_{\substack{p \to_{\widetilde{X}} Y \\ q \leftarrow_{\widetilde{X}} Y}} I^{\mathfrak{l}}_{(p;q)}(Y) \otimes I^{\mathfrak{m}}_{\gamma}(X_{(p,\widehat{Y},q)}).$$

Main Theorem 2 (F.)

This formula requires some conditions related to Y.

$$\Delta_Y(I^{\mathfrak{m}}_{\gamma}(X)) = \prod_{Z \in C_X(Y)} I^{\mathfrak{a}}_{(p_Z;q_Z)}(Z) \otimes I^{\mathfrak{m}}_{\gamma}(X_{\widehat{Y}}).$$

Remark

$$\Delta(I_{\gamma}^{\mathfrak{m}}(X)) = \sum_{Y \subset X} \Delta_{Y}(I_{\gamma}^{\mathfrak{m}}(X)).$$

200

2

・ロト ・四ト ・ヨト ・ヨト

Ku-Yu Fan 15/23

Iterated in 000	itegral Yaman 000			References 000

Examples

∃ のへで

・ロト ・四ト ・ヨト ・ヨト

Iterated integral 000	Yamamoto's integral 000	The motivic version 000	Coaction fomula 0000	Examples 0●000	References 000
Examples	of Theorem	2			

Let us calculate

$$\Delta\left(I^{\mathfrak{m}}\left(\begin{smallmatrix}n& & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & &$$

using Theorem 2. By definition of motivic version of Yamamoto's integral, we have

$$\Delta(I^{\mathfrak{m}}(X)) = \sum_{i=1}^{n} {n-i+m \choose n-i} \Delta(I^{\mathfrak{m}}(0;1,\{0\}^{i},1,\{0\}^{(n-i)+m+1};1)) + \sum_{j=1}^{m} {n+m-j \choose m-j} \Delta(I^{\mathfrak{m}}(0;1,\{0\}^{i},1,\{0\}^{n+(m-j)+1};1)).$$

Image: A matrix

★ 문 ► ★ 문 ► _ 문

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	00●00	000

Examples of Theorem 2

First, using the basic properties of motivic iterated integral, it is easy to show the formula

$$I^{\mathfrak{m}}(0; \{0\}^{a}, 1, \{0\}^{b}; 1) = (-1)^{a+1} \binom{a+b}{a} \zeta^{\mathfrak{m}}(a+b+1),$$

and using $\binom{i}{k}=\binom{i-1}{k}+\binom{i-1}{k-1},$ it is easy to show the formula

$$\sum_{k=0}^{i} (-1)^{i-k+1} \frac{m}{m+k} \binom{i}{k} = \frac{(-1)^{i+1}}{\binom{i+m}{m}}.$$

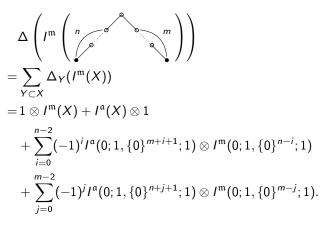
Motivic iterated integrals have the following property

$$I^{\mathfrak{m}}(0; 0; 1) = I^{\mathfrak{m}}(0; 1; 1) = I^{\mathfrak{m}}(a; a_1, \dots, a_k; a) = 0. \ (k \ge 1).$$

Next, using the remark of coproduct to have

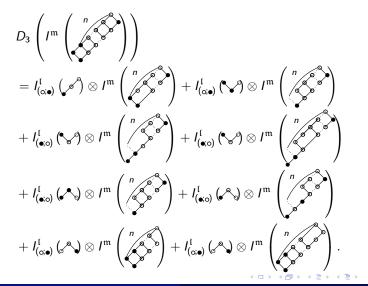
$$\Delta(I^{\mathfrak{m}}(X)) = \sum_{Y \subset X} \Delta_Y(I^{\mathfrak{m}}(X)).$$

Finally, using Theorem 2 and the formula in the previous page. We have



Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	0000●	000

Examples of Theorem 1



Ku-Yu Fan 20 / 23

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	00000	●00

References

・ロン ・回と ・ヨン・

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	00000	0●0
Referenc	ces				

• Ku-Yu Fan. Coproduct Formula for Motivic Version of Yamamoto's Integral. (2024). https://doi.org/10.48550/arXiv.2406.08127. https://doi.org/10.6342/NTU202401087.

- ◆ 注 →

Iterated integral	Yamamoto's integral	The motivic version	Coaction fomula	Examples	References
000	000	000	0000	00000	00●

Thank you for your attention!

浸⇒ Ξ