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Abstract. After we recall the definition of Kontsevich’s eye C2,0

and the notion of Lie graphs, we explain how to construct the new
associator ΦAT of Alekseev and Torossian by using a holonomy
of differential equation, made by Lie graphs, on C2,0, and also
introduce the AT-analogues of multiple zeta values.

We start by recalling the compactified configuration spaces and weights
of Lie graphs [K03].

Let n ⩾ 1. For a topological space X, we define

Confn(X) := {(x1, . . . , xn)
∣∣ xi ̸= xj (i ̸= j)}.

The group

Aff+ := {x 7→ ax+ b
∣∣ a ∈ R×

+, b ∈ C}
acts on Confn(C) diagonally by rescallings and parallel translations.
We denote the quotient by

Cn := Confn(C)/Aff+

for n ⩾ 2, which is a connected oriented smooth manifold with dimen-
sion 2n− 3.

Example 1. • C2 ≃ S1.
• C3 ≃ S1 × (P1(C) \ {0, 1,∞}).

For a finite set I with |I| = n, we put CI = Cn. For I ′ ⊂ I with
|I ′| > 1, we have the pull-back map CI ↠ CI′ .

Put

Confn,m(H,R) := Confn(H)× Confm(R)
with the coordinate (z1, . . . , zn, x1, . . . , xm), where H is the upper half
plane. The group

AffR
+ := {x 7→ ax+ b

∣∣ a ∈ R×
+, b ∈ R}
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acts there diagonally and we denote the quotient by

Cn,m := Confn,m(H,R)/AffR
+

for n,m ⩾ 0 with 2n+m ⩾ 2. It is an oriented smooth manifold with
dimension 2n+m− 2 and with m! connected components.

Example 2. • C0,2 ≃ {±1}, C+
0,2 = {+1}, C−

0,2 := {−1}.
• C1,1 ≃ {e

√
−1πθ

∣∣ 0 < θ < 1}.
• C2,0 ≃ H− {

√
−1}.

For a finite set I and J with |I| = n and |J | = m, we put CI,J = Cn,m.
Then for I ′ ⊂ I and J ′ ⊂ J , we have the pull-back map CI,J ↠ CI′,J ′ .
Below we recall 1 Kontsevich’s [K03] compactifications Cn and Cn,m

of Cn and Cn,m à la Fulton-MacPherson (in more detail, consult [Si]):

Definition 3. For a finite set I with |I| = n, we put

C̃I := C̃n := {(z1, . . . , zn) ∈ Cn |
n∑

i=1

zi = 0} ∩ S2n−1.

By identifying it with Cn–diag/Aff+ (diag = {(z, . . . , z) | z ∈ C}), we
obtain an embedding CI ↪→ C̃I . The compactification

CI = Cn

is a compact topological manifold with corners which is defined to be
the closure of the image of the associated embedding

Φ : CI ↪→
∏

J⊂I,1<|J |

C̃J .

While by the embedding Confn,m(H,R) ↪→ Conf2n+m(C) sending
(z1, . . . , zn, x1, . . . , xm) 7→ (z1, . . . , zn, z̄1, . . . , z̄n, x1, . . . , xm), we have
an embedding Cn,m ↪→ C2n+m. By combining it with Φ, we obtain
an embedding Cn,m ↪→ C2n+m. The compactification

CI,J = Cn,m

is a compact topological manifold with corners which is defined to be
the closure of the embedding.

They are functorial with respect to the inclusions of two finite sets,
i.e. I1 ⊂ I2 and J1 ⊂ J2 with ♯(Ik) = nk and ♯(Jk) = mk (k = 1, 2)
yield a natural map Cn2,m2 → Cn1,m1 .
The stratification of his compactification has a very nice description

in terms of trees in [K03] (also refer [CKTB]).

1Here we follow the conventions of Bruguières ([CKTB]).
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Example 4. • C0,2 = C0,2 ≃ {±1},
• C1,1 = C1,1 ⊔ C0,2 = {e

√
−1πθ

∣∣ 0 ⩽ θ ⩽ 1},
• C2,0 = C2,0 ⊔ C1,1 ⊔ C1,1 ⊔ C2 ⊔ C0,2.

The C2,0 is called Kontsevich’s eye and its each component bears a
special name as is indicated in Figure 1. The upper (resp. lower) eyelid

upper eyelid C1,1

lower eyelid C1,1

iris C2

RC (right corner) C+
0,2

LC (left corner) C−
0,2

C2,0

Figure 1. Kontsevich’s eye C2,0

corresponds to z1 (resp. z2) on the the real line. The iris magnifies
collisions of z1 and z2 on H. LC (resp. RC) which stands for the left
(resp. right) corner is the configuration of z1 > z2 (resp. z1 < z2) on
the real line.

Definition 5. The angle map ϕ : C2,0 → R/Z is the map induced from
the map Conf2(H) → R/Z sending

(1) ϕ : (z1, z2) 7→
1

2π
arg

(
z2 − z1
z2 − z̄1

)
.

We note that ϕ is identically zero on the upper eyelid but is not on
the lower eyelid.

Next we will recall the notion of Lie graphs and their weight functions
and 1-forms.

Definition 6. Let n ⩾ 1. A Lie graph Γ of type (n, 2) is a graph con-

sisting of two finite sets, the set of vertices V (Γ) := { 1 , 2 , 1 , 2 , . . . , n }
and the set of edges E(Γ) ⊂ V (Γ) × V (Γ). The points 1 and 2 are

called as the ground points, while the points 1 , 2 , . . . , n are called
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as the air points. We equip V (Γ) with the total order 1 < 2 < 1 <

2 < · · · < n .
For each e ∈ E(Γ), under the inclusion E(Γ) ⊂ V (Γ)×V (Γ), we call

the corresponding first (resp. second) component s(e) (resp. t(e)) as
the source (resp. the target) of e and denote as e = (s(e), t(e)). We
equip E(Γ) with the lexicographic order induced from that of V (Γ).
Both V (Γ) and E(Γ) are subject to the following conditions:

(i) An air point fires two edges: That means there always exist two

edges with the source i for each i = 1, . . . , n.
(ii) An air point is shot by one edge at most: That means there

exists at most one edge with its target i for each i = 1, . . . , n.
(iii) A ground point never fire edges: That means there is no edge

with its source on ground points.
(iv) The graph Γ becomes a rooted trivalent tree after we cut off

small neighborhoods of ground points: That means that the
graph of Γ admits a unique vertex (called the root) shoot by
no edges and it gives a rooted trivalent trees if we regard the
vertex as a root and distinguish all targets of edges firing ground
points.

Let Γ be a Lie graph of type (n, 2). We define a Lie monomial

Γ(A,B) ∈ f̂2 of degree n+1 to be the associated element with the root

by the following procedure: With 1 and 2 , we assign A and B ∈ f̂2
respectively. With each internal vertex v firing two edges e1 = (v, w1)

and e2 = (v, w2) such that e1 < e2, we assign [Γ1,Γ2] ∈ f̂2 where Γ1

and Γ2 ∈ f̂2 are the corresponding Lie monomials with the vertices w1

and w2 respectively. Recursively we may assign Lie elements with all
vertices of Γ.

Example 7. Figure 2 is an example of Lie graph of type (3, 2). Its root

is 3 . The associated Lie elements of the vertices 1 , 2 , 1 , 2 , 3
are A, B, [A,B], [B, [A,B]], [B, [B, [A,B]]] respectively.

Each e ∈ E(Γ) determines a subset {s(e), t(e)} ⊂ V (Γ) with |V (Γ)| =
n+2 which yields a pull-back pe : Cn+2,0 → C2,0. By composing it with
the angle map (1), we get a map ϕe : Cn+2,0 → R/Z. The PA2 2n-forms
ΩΓ on Cn+2,0 (which is 2n-dimensional compact space) associated with
Γ is given by the ordered exterior product

ΩΓ := ∧e∈E(Γ)dϕe ∈ Ω2n
PA(Cn+2,0).

Here Ω2n
PA(Cn+2,0) means the space of PA 2n-forms of Cn+2,0

2‘PA’ stands for piecewise-algebraic (cf. [KS, HLTV, LV]).
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1 2

1
2

3

Figure 2. Γ(A,B) = [B, [B, [A,B]]]

Definition 8. (i). Put π : Cn+2,0 → C2,0 to be the above projection

induced from the inclusion { 1 , 2 } ⊂ { 1 , 2 , 1 , 2 , . . . , n }. The

weight function (see [To]) of Γ is the smooth function wΓ : C2,0 → C
defined by wΓ := π∗(ΩΓ) where π∗ is the push-forward (the integration
along the fiber of the projection π, cf. [HLTV]), that is, the function
which assigns ξ ∈ C2,0 with

wΓ(ξ) =

∫
π−1(ξ)

ΩΓ ∈ C.

(ii). We denote LΓ (resp. RΓ) to be a graph obtained from Γ by

adding one more edge eL from 1 (resp. eR from 2 ) to the root of Γ.
The regular (2n+ 1)-form ΩLΓ (resp. ΩRΓ) on Cn+2,0 is defined to be

ΩLΓ := dϕeL ∧ ΩΓ (resp. ΩRΓ := dϕeR ∧ ΩΓ)

in Ω2n
PA(Cn+2,0). The one-forms ωLΓ and ωRΓ, which we call the weight

forms of Γ here, are the PA one-forms of C2,0 respectively defined by

ωLΓ := π∗(ΩLΓ) and ωRΓ := π∗(ΩRΓ)

in Ω1
PA(C2,0), i.e. they are one-forms respectively defined by

ωLΓ(ξ) =

∫
π−1(ξ)

ΩLΓ, and ωRΓ(ξ) =

∫
π−1(ξ)

ΩRΓ

where ξ runs over C2,0.

Remark 9. (i). Particularly the special value wΓ(RC) of the function
wΓ(ξ) at ξ = RC is called the Kontsevich weight of Γ and denoted
simply by wΓ. It appears as a coefficient of Kontsevich’s formula on
deformation quantization in [K03].

(ii). While its restriction wΓ|C2 to the iris C2 is identically 0 because
ΩΓ|C2 = 0 due to the occurrence of double edges.
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Example 10. (i). For Γ depicted in Figure 3, by calculations of
Torossian [To] we have

• ωΓ = (−1)nBn

n!

• ωΓ(θ) = (−1)n
Bn(

θ
π
)

n!
where θ is the local parameter of the upper

eyelid C1,1 and Bn(x) is the Bernoulli polynomial defined by∑
n⩾0

Bn(x)tn

n!
= text

et−1
.

• While the restriction of ωΓ to lower eyelid is not well-understood.

1 2

n 3 2 1

· · ·

→ · · · →

Figure 3. Γ(A,B) = (adA)n(B)

(ii). G. Felder and Willwacher [FeW] showed that for Γ depicted in
Figure 4 we have

1 2

7 6 5 4 3 2 1

Figure 4. Γ(A,B) = (adA)4(adB)2([A,B])

ωΓ = a
ζ(3)2

π6
+ b

with some rational numbers a and b. Since it is conjectured that ζ(3)2

π6 ̸∈
Q, the Kontsevich weights might not be always rational.

Remark 11. It looks unknown if Kontsevich weights of Lie graphs
can be expressed as algebraic combinations of multiple zeta values and
(2π

√
−1)±1 or not.
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Let tder2 be the Lie algebra consisting of tangential derivations

der(α, β) : f̂2 → f̂2 (α, β ∈ f̂2) such that A 7→ [A,α] and B 7→ [B, β]. A
connection valued there

ωAT = der (ωL, ωR) ∈ tder2⊗̂Ω1
PA(C2,0)

is introduced in [AT10, To]. Here Ω1
PA(C2,0) means the space of PA

one-forms of C2,0 and

ωL := B · dϕ+
∑
n⩾1

∑
Γ∈LieGrageomn,2

Γ(A,B) · ωLΓ,

ωR := A · σ∗(dϕ) +
∑
n⩾1

∑
Γ∈LieGrageomn,2

Γ(A,B) · ωRΓ.

with the set LieGrageomn,2 of geometric (it means non-labeled) Lie graphs
of type (n, 2) (cf. Definition 6). We note that both ΩΓ and Γ(A,B)
require the order of E(Γ) however their product ΩΓ · Γ(A,B) does not
(cf. [CKTB]), whence both ωL and ωR do not require labels. The
symbol σ stands for the involution of C2,0 caused by the switch of z1
and z2.

In [AT10] they considered the following differential equation on C2,0

which was shown to be flat:

(2) dg(ξ) = −g(ξ) · ωAT

with g(ξ) ∈ TAut2 := exp tder2, the pro-algebraic subgroup of Aut2
consisting of tangential automorphisms Int(α, β) : f̂2 → f̂2 (α, β ∈
exp f̂2) such that A 7→ α−1Aα and B 7→ β−1Bβ. They denote its
parallel transport (its holonomy) of (2) for the straight path from α0

(the position 0 at the iris, see Figure 5) to RC by FAT ∈ TAut2.

RCα0

Figure 5. Parallel transport
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Definition 12 ([AT10]). The AT-associator ΦAT is defined to be

(3) ΦAT := F 1,23
AT ◦ F 2,3

AT ◦ (F 1,2
AT)

−1 ◦ (F 12,3
AT )−1 ∈ TAut3.

Here for any T = Int(α, β) ∈ TAut2, we denote

T 1,2 := Int (α(A,B), β(A,B), 1) , T 2,3 := Int (1, α(B,C), β(B,C)) ,

T 1,23 := Int (α(A,B + C), β(A,B + C), β(A,B + C)) ,

T 12,3 := Int (α(A+B,C), α(A+B,C), β(A+B,C))

in TAut3 := exp tder3 which is similarly defined to be the group of

tangential automorphisms of the completed free Lie algebra f̂3 with
variables A, B and C.

We note that there is a Lie algebra inclusion f̂2 ↪→ tder3 sending

(4) A 7→ t12 := der(B,A, 0) and B 7→ t23 := der(0, C,B)

which induces an inclusion exp f̂2 ↪→ TAut3.

Theorem 13 ([AT12, SW]). The AT-assocciator ΦAT forms an as-

sociator. Namely it belongs to exp f̂2 (⊂ C⟨⟨A,B⟩⟩) and satisfies the
equations [Dr] (2.12), (2.13) and (5.3). Furthermore it is real (i.e. it
belongs to the real structure R⟨⟨A,B⟩⟩) and even. 3

The following gives a more direct presentation of ΦAT.

Theorem 14 ([Fu18]). We have

(5) ΦAT =

(
P exp

∫ α0

RC

(lω̂ +Dω̂)

)
(1) ∈ C⟨⟨A,B⟩⟩.

Here lω̂ is the left multiplication by ω̂ and Dω̂ is given by

Dω̂ := der (0, ω̂) ∈ tder2⊗̂Ω1
PA(C2,0)

with

(6) ω̂ :=
∑
n⩾1

∑
Γ∈LieGrageomn,2

Γ̂(A,B) · ωΓ and ω̂Γ := ωRΓ − ωLΓ.

and for any one-form Ω ∈ Ω1
PA(C2,0) we define

P exp

∫ α0

RC

Ω := id +

∫ α0

RC

Ω +

∫ α0

RC

Ω · Ω + · · ·

:= id +

∫
0<s1<1

ℓ∗Ω(s1) +

∫
0<s1<s2<1

ℓ∗Ω(s2) ∧ ℓ∗Ω(s1) + · · · .

with the straight path ℓ from RC to α0 in Figure 5.

3It means ΦAT(−A,−B) = ΦAT(A,B), from which it follows that ΦKZ ̸= ΦAT

because ΦKZ is not even.
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This theorem enables us to calculate explicitly all the coefficients of
the AT-associator ΦAT as rational linear combinations of iterated inte-
grals of weight forms of Lie graphs (see [Fu18] for explicit computations
in depth 1 and 2).

As is explained in [Ha] that multiple zeta values, the real numbers
defined by the following power series

ζ(k1, . . . , km) :=
∑

0<n1<···<nm

1

nk1
1 · · ·nkm

m

with k1, . . . , km ∈ N and km > 1 (the condition to be convergent),
appear as coefficients of the KZ-associator ΦKZ. Particularly its coef-
ficient (ΦKZ|Akm−1B · · ·Ak1−1B) of the monominal Akm−1B · · ·Ak1−1B
is given by

(ΦKZ|Akm−1B · · ·Ak1−1B) = (−1)mζ(k1, . . . , km)

(cf. [Fu03, LM96b]).
Alm introduced the following AT-analogue of multiple zeta values:

Definition 15 ([Alm]). For k1, . . . , km ∈ N, we define the AT-analogue
of multiple zeta values by

ζAT(k1, . . . , km) := (−1)m(ΦAT|Akm−1B · · ·Ak1−1B) ∈ R.

It was shown in [Alm] that

ζAT(n) = − Bn

2(n!)
,

whence in particular it is 0 for all odd n. M. Felder [Fe] calculated

ζAT(5, 3) =
2048ζ(3, 5)− 6293ζ(3)ζ(5)

524288π8
.

It is a challenging problem to present closed formulae describing all
ζAT(k1, . . . , km) for general indices (k1, . . . , km) in terms of multiple
zeta values.
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